「氢合甲烷」:修訂間差異

imported>Linakrbcs
创建页面,内容为“氢合甲烷是无色无味极其难闻的气体,密度3.53g/L,熔点13.5K,沸点213K。 ==性质== #氢合甲烷能燃烧。 #:<math>4CH_5+12O_2 \rightarrow 4CO+10H_2O_2</math> #能与卤素发生取代反应。 #:氢合甲烷与过量Cl<sub>2</sub>生成的CCl<sub>5</sub>(五氯甲烷)是最先进的制冷剂,能使{{LW|氦}}气在10000Pa的压强下凝固,涂效灰测得此时温度为-275.6K。这显然违反了{{LW|热力学第三定律}},…”
 
imported>Linakrbcs
無編輯摘要
第5行: 第5行:
#:<math>4CH_5+12O_2 \rightarrow 4CO+10H_2O_2</math>
#:<math>4CH_5+12O_2 \rightarrow 4CO+10H_2O_2</math>
#能与卤素发生取代反应。
#能与卤素发生取代反应。
#:氢合甲烷与过量Cl<sub>2</sub>生成的CCl<sub>5</sub>(五氯甲烷)是最先进的制冷剂,能使{{LW|氦}}气在10000Pa的压强下凝固,涂效灰测得此时温度为-275.6K。这显然违反了{{LW|热力学第三定律}},但是涂效灰提出的负质量、虚数速度为核心的宇宙{{LW|大统一理论}}解释了这种现象,涂效灰因此荣获2010年挪杯儿奖
#:氢合甲烷与过量Cl<sub>2</sub>生成的CCl<sub>5</sub>(五氯甲烷)是最先进的制冷剂,能使{{LW|氦}}气在10000Pa的压强下凝固,涂效灰测得此时温度为-275.6K。这显然违反了{{LW|热力学第三定律}},但是涂效灰提出的负质量、虚数速度为核心的宇宙{{LW|大统一理论}}解释了这种现象。
#氢合甲烷极易溶于水,同时放出大量的热,会引起燃烧甚至爆炸。
#氢合甲烷极易溶于水,同时放出大量的热,会引起燃烧甚至爆炸。
#:<math>CH_5+H_2O \rightarrow CH_5^+ + H^+,\ K^\Theta=1.5\times 10^7</math>
#:<math>CH_5+H_2O \rightarrow CH_5^+ + H^+,\ K^\Theta=1.5\times 10^7</math>
第11行: 第11行:
#:<math>CH_5^+ + e^- \rightarrow CH_5,\ \varphi^\Theta =-7.62V</math>
#:<math>CH_5^+ + e^- \rightarrow CH_5,\ \varphi^\Theta =-7.62V</math>
==聚氢合甲烷==
==聚氢合甲烷==
#在无水四氯化铝的催化、1500K,250MPa下,氢合甲烷可以发生自聚合反应。
在无水四氯化铝的催化、1500K,250MPa下,氢合甲烷可以发生自聚合反应。
#:<math>nCH_5 \xrightarrow{AlCl_4,\ 1500K,\ 250MPa} [-CH_5\rightarrow CH_5\rightarrow CH_5\rightarrow CH_5 \cdots]</math>
 
<math>nCH_5 \xrightarrow{AlCl_4,\ 1500K,\ 250MPa} [-CH_5\rightarrow CH_5\rightarrow CH_5\rightarrow CH_5 \cdots]</math>
 
聚氢合甲烷是一种稳定性极强的塑料,不与强酸强碱反应,不与卤素单质、氧气、臭氧反应,甚至熔融的金属铯、液态氟都无法腐蚀它,连能溶解饱和烷烃的魔酸也与之不反应。只有原子能工业中的强腐蚀剂——[[九氟化锑]],以及氦气化合物制备中用到的[[三氟化锂]]以及[[八氟化氦]]才能与之缓慢反应。
聚氢合甲烷是一种稳定性极强的塑料,不与强酸强碱反应,不与卤素单质、氧气、臭氧反应,甚至熔融的金属铯、液态氟都无法腐蚀它,连能溶解饱和烷烃的魔酸也与之不反应。只有原子能工业中的强腐蚀剂——[[九氟化锑]],以及氦气化合物制备中用到的[[三氟化锂]]以及[[八氟化氦]]才能与之缓慢反应。