超盐酸:修订间差异
第135行: | 第135行: | ||
[[File:9f0740c2d562853553e8505698ef76c6a7ef6310.png|thumb|left]] | [[File:9f0740c2d562853553e8505698ef76c6a7ef6310.png|thumb|left]] | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">TDTC电离后的四元氯环上有14π电子,因此具有芳香性,能形成夹心配合物,这种情况对于原子半径很大的过渡金属较为常见。</span> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">TDTC电离后的四元氯环上有14π电子,因此具有芳香性,能形成夹心配合物,这种情况对于原子半径很大的过渡金属较为常见。</span> | ||
== 注释 == | ==最新研究成果== | ||
< | 随着锑星科技的发展与进步,超理学家们借助科技手段,完成了对超盐酸的结构等的进一步深入研究.部分成果摘录如下: | ||
===结构=== | |||
概述:根据目前超理学界公认的观点,超盐酸在标态下的结构为三乙亚氯烷基环丁亚氯烷。在标态下,这一结构存在十氯九氢参与的魔键。这赋予了超盐酸酸根结构极强的稳定性,也使得在环丁氯烷环上的氢在离去后电荷可以离域在整个分子上而不受分子构型的限制。超盐酸也因此拥有极高的酸性。结构中的四元氯环具有较大的角张力,在魔键存在的情况下保持稳定,但当魔键受到影响键能变弱时则容易发生开环,形成氯自由基发生猛烈的的氧化还原反应。由于H2Cl基团的强推电子作用,环上电子云密度较大,一些较强的亲电试剂在某些情况下可以越过反应能垒,打破魔键发生亲电加成,形成不稳定的中间体,而三个α氯原子则带正电,在魔键被破坏时优先于四元环发生氧化还原反应。 | |||
====异构化==== | |||
前面提到过,四元环存在较大的角张力,在魔键被破坏时其中一个Cl-Cl键将断开生成一个不稳定的中间体,然后迅速重排形成一个带有六元环的异构体,即1,3-二乙氯基环己氯烷。这一结构相较于1,2,3-三乙氯基环丁氯烷要更稳定,没有角张力,且存在一个十氯十氢的魔键。这意味着这一结构几乎没有酸性,具有普通高级魔键氯烷的性质。<br/> | |||
在环境无法给予体系足够的能量发生完整的重排反应时(六元环重排由于氯较远需要完全断键),重排生成五元环。五元环张力小,在形成后非猛烈条件不再开环。这一结构酸性较经典结构酸性大大降低,其一级电离与碳酸二级电离相当,原因是氯与氢之间存在较弱的魔键.<br/> | |||
超盐酸主要存在以上两种异构化现象。超盐酸的缩环,完全开环,侧链异构化等现象此处暂不提及。 | |||
====聚合和解聚==== | |||
聚合与解聚:超盐酸难以进一步聚合。虽然理论上可以在四元环上引入第四个侧链,但条件极度苛刻。由于赵明毅先生已经淡出超理学界,无法再提供足够强的锑场和发功条件,即使有铯催化剂也难以实现此反应。但在实验室中,锑星科学家能够让超盐酸与一分子氯化氢与超盐酸在四元环上形成较弱的魔键,类似于碲球的络合物。计算结果得出,它们之间不存在任何形式上的常理键。这是锑星科学家已经制备的氯化氢最高聚合物。理论上四元环的另一侧可以再接上一分 | |||
子氯化氢,但是由于同样的原因没有成功。 | |||
===反应=== | |||
概述:超盐酸作为一种质子酸(强调:这不是混合体系,是一种纯净物,十聚合结构在标态下是稳定的)具有常见酸的通性,包括遇活泼金属释放氢气,与碱中和等。但它作为具有魔键结构的氢氯超酸,具有一些特殊的性质,包括强氧化性,亲电配位性等。接下来会一一说明。 | |||
====超酸性==== | |||
前面提到过,超盐酸由于十氯九氢的离域魔键结构,具有比一般的布朗斯特-路易斯超酸体系更强的质子酸性(其哈密特酸度函数值可以达到-34以下(在100zmy的锑场下使用氟磺酸作缓冲溶液测定),其酸性在相当大的范围内随锑场强度增大而增大(离域魔键的增强),在1000Mzmy左右达到极值(H<sub>0</sub>=-42,氟磺酸缓冲),之后对锑场不敏感。实际上,液相的超盐酸几乎不存在自耦电离现象,因为超盐酸的侧链几乎没有碱性(值得一提的是,氯在锑场中确实可以与四个原子作用,但极不稳定,在液相超盐酸痕量的 | |||
H[Cl<sub>10</sub>H<sub>10</sub>]<sup>+</sup>中,氢离子被连接在四元环上)。<br/> | |||
利用其极强的质子酸性,锑星科学家曾使用超盐酸质子化烃类等极难质子化的物质并将其作为极强的质子溶剂。由于四元环的强亲电性,较为活泼的稀有气体原子可以被附着在四元环上并被质子化(包括Rn,Xe甚至是痕量的Kr),质子化结构如图所示。中间的虚线代表着稀有气体原子与四元环的相互作用,但我们并不清楚这到底是什么。有观点认为这是类似的魔键,但稀有气体也能形成魔键的说法并不能被广泛接受。更多人相信魔键的存在使四元环把负电荷打在了稀有气体上,使稀有气体更容易被质子化。 | |||
====配位性==== | |||
请注意,超盐酸的“配位性”不同于常理中讨论的配位性。一般而言,超盐酸根的四元环具有一定的亲核性,在魔键的作用下可以把电子打在原子或分子的反键轨道上。上文中超盐酸对稀有气体的质子化的公认机理便存在这样的情况(这也能够解释为什么超盐酸的一分子HCl的络合物中氯化氢上的氢原子酸性反而比一般的HCl弱)。超盐酸可以以这种方式进行自耦电离,但由于氢离子的相互作用半径太小,无法有效进行相互作用(也正因如此超盐酸的酸性得以被保留,如果这一结构稳定那么超盐酸的超酸性将不复存在)。<br/> | |||
必须强调的是,这样的相互作用是很弱的,而且在相互作用的形成瞬间就能消失。但如果不是超盐酸的盐而是超盐酸,那么氢离子可以质子化中心原子并稳定这一结构。<br/> | |||
对于一些更大的金属原子(如Cs<sup>+</sup>,Ba<sup>2+</sup>),超盐酸根可以形成相对稳定的二配位结构(如图)。对于这一结构的特殊稳定性,一般认为此时两个酸根受金属原子影响将在四元环上保持几乎平行的状态,这使得两个酸根的侧链产生了较弱的魔键。如果这一说法属实,那么这样的结构实际上是笼状的。受空间位阻影响无法进行第三次配位。<br/> | |||
利用超盐酸的这一特性,可以使用超盐酸分离大金属离子。在制备铯催化剂的时候,少量的铷杂质就会极大的影响催化剂寿命。锑星科学家有较为成熟的工艺使用超盐酸分离出铯,可以得到8N以上纯度的铯。这有点像碲球上的隐烷,但其恐怖的选择性让它在铯/钡提纯领域大显神威。<br/> | |||
值得注意的是,在超盐酸扩环后,尤其是形成六元环后,环可以以常理的方式对中心原子进行配位,形成的是常理键的配位键,在魔键不被破坏的条件下具有一般配位键的通性,这里不做赘述。<br/> | |||
====超氧化性==== | |||
与配位不同,当氧化还原反应发生时,优先得到电子的是环上的α氯原子。由于其具有一定的正电性,同时质子云加强了原子整体的吸电子能力(屏蔽效应的减弱),当锑场环境减弱时原子间相互作用减弱,Cl-Cl键增长,同时键能降低,α氯原子将变得更加裸露。一般而言,在0.1~1zmy的锑场下发功α氯原子的氧化效果最好(如果继续降低则有可能以自由基的形式直接解聚,不具有特殊氧化性)。<br/> | |||
一般而言,离域魔键解体时优先断开的是α氯原子与环的魔键,形成Cl<sub>2</sub>H<sub>3</sub>氯烃自由基。由于锑场十分微弱,Cl<sub>2</sub>H<sub>3</sub>不稳定,会迅速分解为质子云状态下的Cl<sub>2</sub>H<sub>2</sub>和一个氢自由基(如果条件并非特别剧烈该自由基可以重新与四元环结合),然后质子云定域并分解为两分子HCl。超盐酸分解时的超氧化性主要来自于质子云状态下的Cl<sub>2</sub>H<sub>3</sub>。<br/> | |||
由于质子云状态下分子的正电荷不再高度集中于原子核,电子对质子的屏蔽效应明显减弱,这使得氯原子与氢原子外层轨道能量急剧下降。加之Cl<sub>2</sub>H<sub>3</sub>的自由基构型,该分子成为了一种极强的氧化剂。据锑星科学家测定,在0.1zmy的锑场下,电极反应<br/> | |||
Cl<sub>2</sub>H<sub>3</sub>+H<sup>+</sup>+3e<sup>-</sup>==2Cl<sup>-</sup>+2H<sub>2</sub><br/> | |||
的标准还原电位高达7.86V,甚至可以将氟氧化成阳离子(实际上,此时氯的3p简并轨道能量远低于氟的2s轨道,甚至4s的能量也能比氟的2p轨道低一些;而氢的1s电子云则向内收缩一半以上,说明此时氯的部分质子云弥散在氢附近)。 | |||
必须指出,这一反应并不容易控制。一方面质子云状态下的分子在低锑场条件下并不稳定,会在一段时间后定域从而失去强吸电子能力;另一方面如果使用该反应氧化一些难以氧化的物质(例如氟),产生的F<sup>+</sup>几乎会在定域的瞬间氧化氯化氢和氢气。<br/> | |||
<br/> | |||
<br/> | |||
<br/> | |||
[[Category:无机化合物]] | [[Category:无机化合物]] | ||
[[Category:超强酸]] | [[Category:超强酸]] | ||
[[Category:具有重大纪念意义的词条]] | [[Category:具有重大纪念意义的词条]] | ||
[[Category:超理产品]] | [[Category:超理产品]] |