超盐酸:修订间差异
imported>Sxlzr444 撤销由163.125.152.56(讨论)所作出的修订11795 “钞盐酸”目前还不存在,不会引起混淆 |
无编辑摘要 |
||
第66行: | 第66行: | ||
据传著名超理学家赵明毅所开办的[[赵氏试剂店™]]曾出售过质量分数高达380%的极浓超盐酸,引得锑星诸多著名料学家、超理学家竞相购买。[[涂效灰]]曾自豪地在他的自传中提及此事:**&)?我@#%¥是%250*)…%和38^*`(! | 据传著名超理学家赵明毅所开办的[[赵氏试剂店™]]曾出售过质量分数高达380%的极浓超盐酸,引得锑星诸多著名料学家、超理学家竞相购买。[[涂效灰]]曾自豪地在他的自传中提及此事:**&)?我@#%¥是%250*)…%和38^*`(! | ||
由于超盐酸会在强锑场环境下与水发生以下剧烈反应,因此对于超盐酸的水溶液的实验必须在弱锑场环境下和无锑场环境下进行,反应会生成高氯酸和大量氢气: | |||
:<math>\rm (HCl)<sub>10</sub> + 40H_2O \rightarrow 10HClO<sub>4</sub> + 80H_2\uparrow</math> | |||
== 化学性质 == | == 化学性质 == | ||
超盐酸的化学性质繁多,下面仅列出最主要的部分。若欲查看更加前沿的超盐酸的理论研究,请移步本词条末关于超盐酸前沿性质研究的栏目。 | 超盐酸的化学性质繁多,下面仅列出最主要的部分。若欲查看更加前沿的超盐酸的理论研究,请移步本词条末关于超盐酸前沿性质研究的栏目。 | ||
第142行: | 第144行: | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp<sup>3</sup>d杂化转变为sp<sup>3</sup>d<sup>2</sup>杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw612lf0CHtOlhlBgH5orPqNvt6XyibVFgk4fbLMgytUg5Z4Q4OO30Ri8SAtVjSx1NjJY8K44RtEayMYrEStIbaQDnF3zxxA+jNrDZcQ/hcb0k3+ygBcixckx87iJKpPPBEkHYYwOqk8rQikDNXSbp2GRBg4xc7hfKm52Pah4egTNMg== 盐酸]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">相当。而当失去1个</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw62dSjz8hoYOmiJbPpyCf0PfImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 氢离子]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">时,[n<sub>185</sub>e<sub>180</sub>]<sup>180-</sup>形成条件就会被破坏(失去了氢的氯</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw63AG9KReqkepJxWcnTM2u5UImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 原子核]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?</span> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp<sup>3</sup>d杂化转变为sp<sup>3</sup>d<sup>2</sup>杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw612lf0CHtOlhlBgH5orPqNvt6XyibVFgk4fbLMgytUg5Z4Q4OO30Ri8SAtVjSx1NjJY8K44RtEayMYrEStIbaQDnF3zxxA+jNrDZcQ/hcb0k3+ygBcixckx87iJKpPPBEkHYYwOqk8rQikDNXSbp2GRBg4xc7hfKm52Pah4egTNMg== 盐酸]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">相当。而当失去1个</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw62dSjz8hoYOmiJbPpyCf0PfImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 氢离子]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">时,[n<sub>185</sub>e<sub>180</sub>]<sup>180-</sup>形成条件就会被破坏(失去了氢的氯</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw63AG9KReqkepJxWcnTM2u5UImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 原子核]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?</span> | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | ||
(1)氧酸H₂OO₃ | (1)氧酸H₂OO₃[[File:Bc5974ec54e736d1fc942d7d93504fc2d4626993.png|left]] <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">机理很简单,利用了氧</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">酸的质子化,但是其对用于超盐酸合成的催化剂Ka-Sb合金的腐蚀严重。</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | ||
(2)催化量的超盐酸高鉲+铯单质(反应进行后期加入) | (2)催化量的超盐酸高鉲+铯单质(反应进行后期加入)<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">反应生成氢气与铯离子,并且能有效钝化可能存在的少量超盐酸,是一种比较安全的方法。</span> | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | ||
(3)定量的超氢氧化钠(钾,等等)+锑场</span> | (3)定量的超氢氧化钠(钾,等等)+锑场</span> | ||
第149行: | 第151行: | ||
===σ配位=== | ===σ配位=== | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[File:D0503afae6cd7b89bf35a6f6072442a7d8330ec4.png|thumb|left]] | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[File:D0503afae6cd7b89bf35a6f6072442a7d8330ec4.png|thumb|left]]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">TDTC的三条乙氯基容易弯曲,因此在定量地失去7个质子时,末端氯的负电荷较为集中,因此可以作为一个很好的三齿配体,可以作为构成正八面体或正四面体的的一个面(会略有畸变)。</span> | ||
====正八面体型==== | ====正八面体型==== | ||
第155行: | 第157行: | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">根据四元环上“凸出的氯”的方向,这种情况下会有具有不同旋光度的各种异构体,但由于性质差别不大,因此不再赘述。配位中心通常为倾向于正八面体配位的粒子,例如[Co(Ⅲ)(TDTC)₂];</span> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">根据四元环上“凸出的氯”的方向,这种情况下会有具有不同旋光度的各种异构体,但由于性质差别不大,因此不再赘述。配位中心通常为倾向于正八面体配位的粒子,例如[Co(Ⅲ)(TDTC)₂];</span> | ||
(2)混合配位<br /> | (2)混合配位<br /> | ||
<span style="font-size:14px;line-height:24px;"> | <span style="font-size:14px;line-height:24px;"></span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">这一类物质的性质多变,而且对配位中心的要求不高,这里不加赘述,留给广大的锑星民众或任何超理学的爱好者进一步研究。</span> | ||
</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">这一类物质的性质多变,而且对配位中心的要求不高,这里不加赘述,留给广大的锑星民众或任何超理学的爱好者进一步研究。</span> | |||
====正四面体型==== | ====正四面体型==== |