超盐酸:修订间差异
imported>Sxlzr444 无编辑摘要 |
无编辑摘要 |
||
第148行: | 第148行: | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp<sup>3</sup>d杂化转变为sp<sup>3</sup>d<sup>2</sup>杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw612lf0CHtOlhlBgH5orPqNvt6XyibVFgk4fbLMgytUg5Z4Q4OO30Ri8SAtVjSx1NjJY8K44RtEayMYrEStIbaQDnF3zxxA+jNrDZcQ/hcb0k3+ygBcixckx87iJKpPPBEkHYYwOqk8rQikDNXSbp2GRBg4xc7hfKm52Pah4egTNMg== 盐酸]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">相当。而当失去1个</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw62dSjz8hoYOmiJbPpyCf0PfImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 氢离子]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">时,[n<sub>185</sub>e<sub>180</sub>]<sup>180-</sup>形成条件就会被破坏(失去了氢的氯</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw63AG9KReqkepJxWcnTM2u5UImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 原子核]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?</span> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp<sup>3</sup>d杂化转变为sp<sup>3</sup>d<sup>2</sup>杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw612lf0CHtOlhlBgH5orPqNvt6XyibVFgk4fbLMgytUg5Z4Q4OO30Ri8SAtVjSx1NjJY8K44RtEayMYrEStIbaQDnF3zxxA+jNrDZcQ/hcb0k3+ygBcixckx87iJKpPPBEkHYYwOqk8rQikDNXSbp2GRBg4xc7hfKm52Pah4egTNMg== 盐酸]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">相当。而当失去1个</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw62dSjz8hoYOmiJbPpyCf0PfImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 氢离子]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">时,[n<sub>185</sub>e<sub>180</sub>]<sup>180-</sup>形成条件就会被破坏(失去了氢的氯</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw63AG9KReqkepJxWcnTM2u5UImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 原子核]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?</span> | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | ||
(1)氧酸H₂OO₃[[File:Bc5974ec54e736d1fc942d7d93504fc2d4626993.png|left]] <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">机理很简单,利用了氧</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">酸的质子化,但是其对用于超盐酸合成的催化剂Ka-Sb合金的腐蚀严重。</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | (1)氧酸H₂OO₃[[File:Bc5974ec54e736d1fc942d7d93504fc2d4626993.png|left]] | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">机理很简单,利用了氧</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">酸的质子化,但是其对用于超盐酸合成的催化剂Ka-Sb合金的腐蚀严重。</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | |||
(2)催化量的超盐酸高锎+铯单质(反应进行后期加入)<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">反应生成氢气与铯离子,并且能有效钝化可能存在的少量超盐酸,是一种比较安全的方法。</span> | (2)催化量的超盐酸高锎+铯单质(反应进行后期加入)<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">反应生成氢气与铯离子,并且能有效钝化可能存在的少量超盐酸,是一种比较安全的方法。</span> | ||
第226行: | 第227行: | ||
(3)魔盐酸:分子式(HCl)<sub>10000</sub>.将1×10^25分子的奇盐酸置于特制圆底烧瓶内,置于撒哈拉的阳光下。同时向原地烧瓶内有规律地定时通入液态锎,以制造锑场(研究表明,锑场对于魔盐酸的合成催化效果并不理想)。经过2.50×10^7s左右,方可制得约38分子的魔盐酸。由于制出的量极少,无法进行准确的测量。科学家们估计,魔盐酸的熔点约60°C,沸点约5000°C。<br /> | (3)魔盐酸:分子式(HCl)<sub>10000</sub>.将1×10^25分子的奇盐酸置于特制圆底烧瓶内,置于撒哈拉的阳光下。同时向原地烧瓶内有规律地定时通入液态锎,以制造锑场(研究表明,锑场对于魔盐酸的合成催化效果并不理想)。经过2.50×10^7s左右,方可制得约38分子的魔盐酸。由于制出的量极少,无法进行准确的测量。科学家们估计,魔盐酸的熔点约60°C,沸点约5000°C。<br /> | ||
(4)终盐酸:分子式(HCl)<sub>100000</sub>.这是科学家目前制出的最高阶的超盐酸衍生物,目前科学家已制得大约25分子的终盐酸,妥善保存在世界各地实验室中的小螺纹盖玻璃瓶中。据估算,其熔点约100°C,沸点约7000°C。<br /> | (4)终盐酸:分子式(HCl)<sub>100000</sub>.这是科学家目前制出的最高阶的超盐酸衍生物,目前科学家已制得大约25分子的终盐酸,妥善保存在世界各地实验室中的小螺纹盖玻璃瓶中。据估算,其熔点约100°C,沸点约7000°C。<br /> | ||
(5)虚盐酸:目前停留在假想阶段。理论上,利用终盐酸合成是可行的。但条件极其苛刻,因而未能制取。据科学家推算,其熔点约150°C,室温下应当是固体。这种盐酸由于六魔键极难产生,所以目前无法制造。科学家还推测,倘若将一定量的终盐酸放入圆底烧瓶,不断通入气态锎,将它置于锑星的光照下,持续约10^25s,可以合成1分子的虚盐酸。 | (5)虚盐酸:目前停留在假想阶段。理论上,利用终盐酸合成是可行的。但条件极其苛刻,因而未能制取。据科学家推算,其熔点约150°C,室温下应当是固体。这种盐酸由于六魔键极难产生,所以目前无法制造。科学家还推测,倘若将一定量的终盐酸放入圆底烧瓶,不断通入气态锎,将它置于锑星的光照下,持续约10^25s,可以合成1分子的虚盐酸。(6)M盐酸:分子式(HCI*M)4562751356.在锑星<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[Category:无机化合物]]处<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[Category:超强酸]]于<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[Category:具有重大纪念意义的词条]]假<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[Category:超理产品]]想<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">[[Category:超理结构]]阶段,将4.562751356*10^152分子盐酸置于10*10^12摄氏度下经过10*10^236s后可形成。由于M键过于难产生,所以以目前条件无法制造。 | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | |||
== 注释 == | == 注释 == | ||
超盐酸 | 超盐酸 | ||
第245行: | 第249行: | ||
14.《The Antimonic Research on Hyperhydrochloric Acid》<br /> | 14.《The Antimonic Research on Hyperhydrochloric Acid》<br /> | ||
15.《涂效灰自传》<br /> | 15.《涂效灰自传》<br /> | ||
16《神秘的M原子》 | |||