超盐酸:修订间差异
外观
无编辑摘要 |
imported>Wyz 2015 小 撤销112.10.95.29(讨论)的版本14479 |
||
第26行: | 第26行: | ||
====金属高温催化法==== | ====金属高温催化法==== | ||
超盐酸的合成条件很苛刻,目前只有一种人工的实验室合成方法,是由中国籍锑星裔的著名物理学家、化学家、超理学家[[赵明毅]]于公元前250年发现的。《[[锑氏秘集]]》中有关记载为<br /> | 超盐酸的合成条件很苛刻,目前只有一种人工的实验室合成方法,是由中国籍锑星裔的著名物理学家、化学家、超理学家[[赵明毅]]于公元前250年发现的。《[[锑氏秘集]]》中有关记载为<br /> | ||
“兲星[注:古人当时对于锑星的称呼,音同"天"]冬月地上有霜[注:现在认为可能是锑星空气中存在氯化氢,遇冷液化成霜],味辛。扫取以 | “兲星[注:古人当时对于锑星的称呼,音同"天"]冬月地上有霜[注:现在认为可能是锑星空气中存在氯化氢,遇冷液化成霜],味辛。扫取以水淋汁,又以五金[注:指多种不同金属]和铯入甑[注:古代一种容器,常用于反应],乃发功煎炼而成。启之,则味芳香,色绯,人皆奇之。乃贡之于上[注:指皇帝],上用于熏殿,则数日而香不歇也”<br /> | ||
秘集中还说,这个方法“得天独厚,浑然天成,乃锑氏赵家之秘传也”。但上述记载似乎刻意模糊了制备的详细过程,且由于年代久远难以考证,他是否真正合成了超盐酸已不得而知。所以现代学者多认为赵明毅只提出了这一方法,但并未应用该方法。<br /> | 秘集中还说,这个方法“得天独厚,浑然天成,乃锑氏赵家之秘传也”。但上述记载似乎刻意模糊了制备的详细过程,且由于年代久远难以考证,他是否真正合成了超盐酸已不得而知。所以现代学者多认为赵明毅只提出了这一方法,但并未应用该方法。<br /> | ||
第151行: | 第151行: | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp<sup>3</sup>d杂化转变为sp<sup>3</sup>d<sup>2</sup>杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw612lf0CHtOlhlBgH5orPqNvt6XyibVFgk4fbLMgytUg5Z4Q4OO30Ri8SAtVjSx1NjJY8K44RtEayMYrEStIbaQDnF3zxxA+jNrDZcQ/hcb0k3+ygBcixckx87iJKpPPBEkHYYwOqk8rQikDNXSbp2GRBg4xc7hfKm52Pah4egTNMg== 盐酸]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">相当。而当失去1个</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw62dSjz8hoYOmiJbPpyCf0PfImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 氢离子]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">时,[n<sub>185</sub>e<sub>180</sub>]<sup>180-</sup>形成条件就会被破坏(失去了氢的氯</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw63AG9KReqkepJxWcnTM2u5UImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 原子核]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?</span> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">我们要做的是在0.1s之内使生成的TDTC稳定下来。连接在四元环上的氢在离去后,该氯原子由sp<sup>3</sup>d杂化转变为sp<sup>3</sup>d<sup>2</sup>杂化(三角双锥变为正八面体,涉及电子的超跃迁),使得四元环上有了14π电子,具有芳香性而更加稳定,再加上含氯基团的吸电子效应,使得这个氢的酸性强于其他9个氢,甚至同“魔键化”的超</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw612lf0CHtOlhlBgH5orPqNvt6XyibVFgk4fbLMgytUg5Z4Q4OO30Ri8SAtVjSx1NjJY8K44RtEayMYrEStIbaQDnF3zxxA+jNrDZcQ/hcb0k3+ygBcixckx87iJKpPPBEkHYYwOqk8rQikDNXSbp2GRBg4xc7hfKm52Pah4egTNMg== 盐酸]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">相当。而当失去1个</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw62dSjz8hoYOmiJbPpyCf0PfImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 氢离子]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">时,[n<sub>185</sub>e<sub>180</sub>]<sup>180-</sup>形成条件就会被破坏(失去了氢的氯</span>[http://jump2.bdimg.com/safecheck/index?url=rN3wPs8te/pL4AOY0zAwhz3wi8AXlR5gsMEbyYdIw63AG9KReqkepJxWcnTM2u5UImOuUl9obIdesUqvhcRz+hXSuwz9b96EragWmZ1jer1XQuxoOXhQsXMy1KBvIgswnswldODULTXzdhl0MRtugaflV7/4/ZamxqKYUSGO7vXDEb07ntm6k67KFWNUazCO6BmVeCSyobH/mKLhTd7M9zA8Zu4mdgY0 原子核]<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">变得稳定),使得TDTC稳定下来。因此我们需要一种碱使强酸性的氢离去,又不至于太强使所有氢全部离去而使其再次不稳定而形成超盐酸根。什么物质具有这种适当的碱性呢?</span> | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"> | ||
(1)氧酸H₂OO₃[[File:Bc5974ec54e736d1fc942d7d93504fc2d4626993.png|left]] | (1)氧酸H₂OO₃[[File:Bc5974ec54e736d1fc942d7d93504fc2d4626993.png|left]] | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">机理很简单,利用了氧</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">酸的质子化,但是其对用于超盐酸合成的催化剂Ka-Sb合金的腐蚀严重。</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">机理很简单,利用了氧</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">酸的质子化,但是其对用于超盐酸合成的催化剂Ka-Sb合金的腐蚀严重。</span><span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | ||
(2)催化量的超盐酸高锎+铯单质(反应进行后期加入)<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">反应生成氢气与铯离子,并且能有效钝化可能存在的少量超盐酸,是一种比较安全的方法。</span> | (2)催化量的超盐酸高锎+铯单质(反应进行后期加入)<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">反应生成氢气与铯离子,并且能有效钝化可能存在的少量超盐酸,是一种比较安全的方法。</span> | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | <span style="color:rgb(51,51,51);font-size:14px;line-height:24px;"><br /> | ||
(3)定量的超氢氧化钠(钾,等等)+锑场</span> | (3)定量的超氢氧化钠(钾,等等)+锑场</span> | ||
第187行: | 第187行: | ||
[[File:9f0740c2d562853553e8505698ef76c6a7ef6310.png|thumb|left]] | [[File:9f0740c2d562853553e8505698ef76c6a7ef6310.png|thumb|left]] | ||
<span style="color:rgb(51,51,51);font-size:14px;line-height:24px;">TDTC电离后的四元氯环上有14π电子,因此具有芳香性,能够形成夹心配合物。这种情况对于原子半径很大的过渡金属是很常见的。</span> | |||
<br /> | <br /> | ||
<br /> | <br /> | ||
第222行: | 第222行: | ||
的标准还原电位高达7.86V,甚至可以将氟氧化成阳离子(实际上,此时氯的3p简并轨道能量远低于氟的2s轨道,甚至4s的能量也能比氟的2p轨道低一些;而氢的1s电子云则向内收缩一半以上,说明此时氯的部分质子云弥散在氢附近)。 | 的标准还原电位高达7.86V,甚至可以将氟氧化成阳离子(实际上,此时氯的3p简并轨道能量远低于氟的2s轨道,甚至4s的能量也能比氟的2p轨道低一些;而氢的1s电子云则向内收缩一半以上,说明此时氯的部分质子云弥散在氢附近)。 | ||
必须指出,这一反应并不容易控制。一方面质子云状态下的分子在低锑场条件下并不稳定,会在一段时间后定域从而失去强吸电子能力;另一方面如果使用该反应氧化一些难以氧化的物质(例如氟),产生的F<sup>+</sup>几乎会在定域的瞬间氧化氯化氢和氢气。 | 必须指出,这一反应并不容易控制。一方面质子云状态下的分子在低锑场条件下并不稳定,会在一段时间后定域从而失去强吸电子能力;另一方面如果使用该反应氧化一些难以氧化的物质(例如氟),产生的F<sup>+</sup>几乎会在定域的瞬间氧化氯化氢和氢气。 | ||
== | == 衍生物<ref>https://sbdupedia.fandom.com/zh/wiki/%E8%B6%85%E7%9B%90%E9%85%B8</ref>== | ||
以下简要列出三乙亚氯烷基环丁亚氯烷(以下简称超盐酸)的其它衍生物。<br /> | 以下简要列出三乙亚氯烷基环丁亚氯烷(以下简称超盐酸)的其它衍生物。<br /> | ||
(1)极盐酸:分子式(HCl)<sub>100</sub>.用超盐酸根替换超盐酸里所有的氯,即得到极盐酸。超盐酸根与超盐酸根之间以二魔键连接。它的酸性与超盐酸接近。室温下是粘稠液体,熔点-6.38°C,沸点约2922°C。科学家目前正在研究关于其高沸点的原因。<br /> | (1)极盐酸:分子式(HCl)<sub>100</sub>.用超盐酸根替换超盐酸里所有的氯,即得到极盐酸。超盐酸根与超盐酸根之间以二魔键连接。它的酸性与超盐酸接近。室温下是粘稠液体,熔点-6.38°C,沸点约2922°C。科学家目前正在研究关于其高沸点的原因。<br /> | ||
第253行: | 第253行: | ||
14.《The Antimonic Research on Hyperhydrochloric Acid》<br /> | 14.《The Antimonic Research on Hyperhydrochloric Acid》<br /> | ||
15.《涂效灰自传》<br /> | 15.《涂效灰自传》<br /> | ||
16《神秘的M原子》<br /> | 16.《神秘的M原子》<br /> | ||
[[Category:无机化合物]] | [[Category:无机化合物]] |