编辑“︁锕镁硒方程”︁

警告:您没有登录。如果您进行任何编辑,您的IP地址会公开展示。如果您登录创建账号,您的编辑会以您的用户名署名,此外还有其他益处。

该编辑可以被撤销。 请检查下面的对比以核实您想要撤销的内容,然后发布下面的更改以完成撤销。

最后版本 您的文本
第1行: 第1行:
锕镁硒方程,又叫阿梅溪方程,郭氏方程,是由锟星超理学家[[郭子]]推导出来的一条方程,它被用于描述一个分子所具备的锑能(单位:百赵明毅,即活化该分子所需的[[锑场]])。锕镁硒方程的提出是超理由旧超理转变向新超理的一个重要标志,在超理物理学史上有里程碑的意义
锕镁硒方程,又叫阿梅溪方程,郭氏方程,是由锟星超理学家[[郭子]]推导出来的一条方程,它被用于描述一个分子所具备的锑能(即活化该分子所需的[[锑场]])。


==发现==
在经典超理学中,宏观尺寸化合物的锑能可以使用王存臻公式来表达,但这仅适用于分子数>30000的集合,对于单个分子,郭子通过研究硒化锕镁(MgSe·Ac<sub>2</sub>Se<sub>3</sub>)和镧镁(MgLa)提出此方程来计算,这对分子绘图([[有机画学]])和纳米化学做出了巨大的贡献。郭子在推导出此方程后高兴的大喊:锕镁硒!啊啊啊啊啊!
在经典超理学中,宏观尺寸化合物的锑能可以使用王存臻公式来表达,但这仅适用于分子数>30000的集合,对于单个分子,郭子通过研究硒化锕镁(MgSe·Ac<sub>2</sub>Se<sub>3</sub>)和镧镁(MgLa)提出此方程来计算,这对分子绘图([[有机画学]])和纳米化学做出了巨大的贡献。郭子在推导出此方程后高兴的大喊:锕镁硒!啊啊啊啊啊!
锕镁硒方程的提出是超理由旧超理转变向新超理的一个重要标志,在超理物理学史上有里程碑的意义。


== 数学形式 ==
== 数学形式 ==
第9行: 第10行:
<math>\frac{2\surd(a{\scriptstyle\text{0}} + a{\scriptstyle\text{sb}}i)}{4\Phi + e} = \iota Mr^2</math>
<math>\frac{2\surd(a{\scriptstyle\text{0}} + a{\scriptstyle\text{sb}}i)}{4\Phi + e} = \iota Mr^2</math>


其中a0为该分子在绝对零度下每分钟所散发出的锑场,asb为标准锑场原子恒数,也就是去单位的[[标准锑场强|1标准锑场]]后减去胆矾自身散发锑场强后的zmy值,约为3.141592789,ι为郭子常数,约为0.178293,Mr为该分子所具备的摩尔质量,Φ为锑能。这可以求出许多分子的锑能,例如,一个独立存在的水分子所具有的的锑能大约是27.6zmy(0.276百赵)
其中a0为该分子在绝对零度下每分钟所散发出的锑场,asb为标准锑场恒数,也就是去单位的1标准锑场的zmy值,约为3.141592789,ι为郭子常数,约为0.178293,Mr为该分子所具备的摩尔质量,Φ为锑能。


如果该物质所具有的锑场很低,乃至几乎没有锑场,那么它的a0便可忽略不计,这时仅摩尔质量会影响该物质的锑能。
如果该物质所具有的锑场很低,乃至几乎没有锑场,那么它的a0便可忽略不计,这时仅摩尔质量会影响该物质的锑能。


[[Category:超理物理]]
<br />
[[Category:物理]]
请注意,所有对锑星百科的贡献均可能会被其他贡献者编辑、修改或删除。如果您不希望您的文字作品被随意编辑,请不要在此提交。
您同时也向我们承诺,您提交的内容为您自己所创作,或是复制自公共领域或类似自由来源(详情请见锑星百科:著作权)。未经许可,请勿提交受著作权保护的作品!
取消 编辑帮助​(在新窗口中打开)
以下为几个常用的符号,点选你想要的符号后,它会立即出现在编辑框中你所指定的位置。

检视此模板