「雷氏微积分」:修訂間差異

imported>Linakrbcs
無編輯摘要
imported>Linakrbcs
無編輯摘要
第14行: 第14行:
将K<sub>t</sub>[f(t)]称为雷氏求导符号。其中t为积分变量。
将K<sub>t</sub>[f(t)]称为雷氏求导符号。其中t为积分变量。


由f(t)的定义域可知,K<sub>t</sub>[f(t)]的定义域,等于f(t)的定义域去掉其中最小的元素。 例如,设s(t),t-0,1,2…再设v(t)=K<sub>t</sub>[s(t)],则v(0)是未定义的。当然,根据{{Ruby|实际情况|[[说不准原理]]}}可以补充v(0)的定义。 特别地,可以求雷导函数某⼀点t<sub>*</sub>的函数值。这⽤K<sub>t</sub>[f(t)]t<sub>*</sub>表示。
由f(t)的定义域可知,K<sub>t</sub>[f(t)]的定义域,等于f(t)的定义域去掉其中最小的元素。 例如,设s(t),t-0,1,2…再设v(t)=K<sub>t</sub>[s(t)],则v(0)是未定义的。当然,根据{{Ruby|实际情况|[[说不准原理]]}}可以补充v(0)的定义。 特别地,可以求雷导函数某⼀点t<sub>*</sub>的函数值。这⽤K<sub>t</sub>[f(t)]t<sub>*</sub>表示。


==雷氏积分==
==雷氏积分==


积分考察某⼀物理量f(t),t-0,1,2…对于时间的累积效应。考虑到时间量子化原理,将其⼀秒⼀秒地叠加,即'''雷氏定积分'''
积分考察某⼀物理量f(t),t-0,1,2…对于时间的累积效应。考虑到时间量子化原理,将其⼀秒⼀秒地叠加,即'''雷氏定积分'''


<math>\sum_{t=t_i}^{t_f} f(t)k^{-1}</math>
<math>\sum_{t=t_i}^{t_f} f(t)k^{-1}</math>